Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Modelo lineal y ecuación de calor – Imágenes (página 2)




Enviado por Pablo Turmero



Partes: 1, 2

Monografias.com
Cálculo de T óptimo
Supongamos una imagen con 2 zonas de brillo. Se trata de estimar la función de densidad de probabilidad p(z) que es la mezcla de 2 densidades de probabilidad. Una para los pixeles claros y otra para los oscuros.

Monografias.com
Umbral óptimo

Monografias.com
Umbral óptimo
Si suponemos distribución gaussiana e iguales varianzas se puede obtener una expresión del umbral óptimo de la forma:

Monografias.com
Segmentación de regiones
Dividir la escena en n subregiones conexas tal que:

Monografias.com
Regiones
Las últimas 2 condiciones indican que la región cumple una propiedad y que los pixels de 2 regiones son distintas en el sentido de esa propiedad, que define la segmentación.

Monografias.com
Regiones
Estructura piramidal (quizas los pixels)
Un cirterio de aproximación
Unir regiones adyacentes si la aproximación es similar
Dividir regiones con error de aproximación grande.
Subir y bajar en la pirámide buscando bajar la norma de la aproximación.
Ojo: relación de la altura en la pirámde con la escala.

Monografias.com
Grafo de Adyacencia (RAG)
Cada región un nodo, con sus propiedades.
Los arcos representan las relaciones entre regiones con una distancia asociada.
Se define el RAG.
Unir las regiones (nodos) más cercanas si la distancia es menor a un umbral.
Recalcular el RAG
Volver a 2 hasta que no se puedan unir.

Monografias.com
ejemplos
En segmenta.pdf

Monografias.com
Un modelo general de segmentación
Morel y Solimini en “Variational Methods in Image Segmentation” proponen que todos los algoritmos de segmentación corresponden a un mismo modelo general: minimizar una “energía de segmentación”, esencialmente el funcional de Mumford y Shah

Monografias.com
Energía de segmentación

En el dominio sin los bordes:
Regularidad: aproximación por “trozos”.
Similitud: con la imagen original
En los bordes:
Bordes regulares: El conjunto de discontinuidad de “longitud” mínima.
Minimizar la energía.

Monografias.com
Introducir información a priori?
A veces se conoce “algo”.
Cuidado con “ver lo que se quiere ver”…
Buscamos objetos de forma conocida.
Sabemos que hay ciertas clases.
Buscamos bordes con ciertas características.

Monografias.com
Información global/local
En ocasiones la información debe ser detectada utilizando un operador global: toda la imagen aporta a la detección.
La Transformada Hough es un ejemplo de operador global.

Monografias.com
Transformada Hough.
Obtener el campo de gradientes de la imagen.
Crear un espacio de acumulación en función de los parámetros de la función que se busca.
Los máximos en el espacio de acumulación señalan la existencia de los objetos buscados.

Monografias.com
Transformada Hough. Líneas.
Una línea es definida como:
La transformada Hough de esa línea es un punto en el plano .
Discretizamos el espacio y para cada punto de la imagen calculamos su representación en el plano .
Los máximos locales en son líneas.

Monografias.com
Transformada Hough. Líneas.
s
s
y
x

Monografias.com
Transformada Hough
Círculos
3 parámetros: 2 para el centro + radio
Elipses

5 parámetros: centro, orientación, ejes mayor y menor.
Ballard: Transformada de Hough generalizada.

Monografias.com
Transformada de Hough
Se trata de una forma de “Pattern Matching”
Se transforma un una búsqueda global en una local en el espacio de parámetros.
Problemas: discretización en el espacio de los parámetros.
Discretizar usando información de dirección en el borde?

Monografias.com
Ejemplos Transf. de Hough
Pardo

Monografias.com
Maximo a Posteriori
En pardo hay ejemplos

Monografias.com
Evolución de frentes
Segmentar con cierta información a priori:
Curvas cerradas, de espesor 1, contínuas, “más o menos regulares”
Hacer evolucionar un frente de modo que minimice la funcional de Mumford-Shah u otra “energía de segmentación”:

Monografias.com
Evolución de frentes
Consideremos un frente (curva en 2D, superficie en 3D, hipersuperficie), que separa 2 regiones y que se mueve según una velocidad dada:
La idea es seguir el frente cuando evoluciona en el tiempo e introducir en F “lo que buscamos”

Monografias.com
Evolución de frentes
En el caso de una curva plana. Podemos descomponer F en sus dos componentes:

La componente tangencial no cambia la geometría de la curva. Nos interesa la componente normal. Siempre podemos parametrizar la curva para que la componente tangencial sea nula.

Monografias.com
Evolución de frentes
Trabajamos entonces con una velocidad:

Donde:
L:propiedades locales del frente (Ej: k)
G:propiedades globales del frente (Ej: forma)
I: propiedades independientes del frente. Por ejemplo asociadas a la imagen!

Monografias.com
Ejemplo
La evolución de una curva según la curvatura local en la dirección normal la regulariza, va aun círculo, a un punto y desaparece.

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter